Section 1.3 Vector Equations

<u>Vectors in \mathbb{R}^2 </u>

Definitions

1. A matrix with only one column is called a column vector or simply a vector. For example,

$$\vec{\mathcal{H}} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}, \quad \vec{\mathcal{V}} = \begin{bmatrix} 0 & | \\ 0 & 4 \end{bmatrix}, \quad \vec{\mathcal{W}} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

2. Two vectors in \mathbb{R}^2 are **equal** if and only if their corresponding entries are equal. For example,

$$\vec{a} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
 and $\vec{b} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ are not equal.

3. The set of all vectors with two entries is denoted by \mathbb{R}^2 (read "r-two").

4. Given two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 , their sum is the vector $\mathbf{u} + \mathbf{v}$ obtained by adding corresponding entries of \mathbf{u} and \mathbf{v} . For example,

$$\vec{u} + \vec{v} = \begin{pmatrix} -3 \\ 2 \end{pmatrix} + \begin{pmatrix} 0.1 \\ 0.4 \end{pmatrix} = \begin{pmatrix} -2.9 \\ 2.4 \end{pmatrix}$$

5. Given a vector \mathbf{u} and a real number c, the scalar multiple of \mathbf{u} by c is the vector $c\mathbf{u}$ obtained by multiplying each entry in \mathbf{u} by c. For example,

If
$$\vec{n} = \begin{bmatrix} -3\\2 \end{bmatrix}$$
 and $c = 4$, then $c\vec{n} = 4 \cdot \begin{bmatrix} -3\\2 \end{bmatrix} = \begin{bmatrix} -12\\8 \end{bmatrix}$

Example 1 Write a vector equation that is equivalent to the given system of equations.

$$4x_{1} + x_{2} + 3x_{3} = 9$$

$$x_{1} - 7x_{2} - 2x_{3} = 2$$

$$8x_{1} + 6x_{2} - 5x_{3} = 15$$

$$ANS \stackrel{?}{=} \begin{pmatrix} 4x_{1} \\ x_{1} \\ 8x_{1} \end{pmatrix} + \begin{pmatrix} x_{2} \\ -7x_{2} \\ 6x_{2} \end{pmatrix} + \begin{pmatrix} 3x_{3} \\ -2x_{3} \\ -5x_{3} \end{pmatrix} = \begin{pmatrix} 9 \\ 2 \\ 15 \end{bmatrix}$$

$$or \quad x_{1} \begin{pmatrix} 4 \\ 1 \\ 8 \end{pmatrix} + \begin{pmatrix} x_{2} \\ -7 \\ 6 \end{pmatrix} + \begin{pmatrix} 1 \\ -7 \\ 6 \end{pmatrix} + \begin{pmatrix} x_{3} \\ -2 \\ -5 \end{pmatrix} = \begin{pmatrix} 9 \\ 2 \\ 15 \end{bmatrix}$$

<u>Geometric Descriptions of \mathbb{R}^2 </u>

We can identify a geometric point (a, b) with the column vector $\begin{bmatrix} a \\ b \end{bmatrix}$

FIGURE 2 Vectors with arrows.

Parallelogram Rule for Addition

If **u** and **v** in \mathbb{R}^2 are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are $\mathbf{u}, \mathbf{0}$, and \mathbf{v} . See Figure 3.

Scalar multiples of a nonzero vector

The set of all scalar multiples of one fixed nonzero vector ${f u}$ is a line through the origin, (0,0) and ${f u}$.

<u>Generalization to \mathbb{R}^3 and \mathbb{R}^n </u>

- 1. Vectors in \mathbb{R}^3 are 3 imes 1 column matrices with three entries.
- 2. Let n be a positive integer, \mathbb{R}^n denotes the collection of all lists of ${
 m n}$ real numbers, usually written as n imes 1column matrices, such as

$$\mathbf{u} = egin{bmatrix} u_1 \ u_2 \ dots \ u_n \end{bmatrix}$$

00 ... 0

Algebraic Properties of \mathbb{R}^n

For all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^n and all scalars c and d :

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- u + v = v + u
 (u + v) + w = u + (v + w)
 u + 0 = 0 + u = u $\overline{0}$ =
- $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$, where $-\mathbf{u}$ denotes $(-1)\mathbf{u}$
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- $c(d\mathbf{u}) = (cd)\mathbf{u}$
- $1\mathbf{u} = \mathbf{u}$

Linear Combinations

Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ in \mathbb{R}^n and given scalars c_1, c_2, \dots, c_p , the vector \mathbf{y} defined by

 $\mathbf{y} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$

is called a **linear combination** of $\mathbf{v}_1, \ldots, \mathbf{v}_p$ with weights c_1, \ldots, c_p .

Theorem

A vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n & \mathbf{b} \end{bmatrix} \tag{1}$$

be Span ? a., ..., and (by the def of span ? a..., a)

In particular, **b** can be generated by a linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_n$ if and only if there exists a solution to the linear system corresponding to the matrix (1).

Definition: Span $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$

If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_p$ is denoted by Span $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ and is called the subset of \mathbb{R}^n spanned (or generated) by $\mathbf{v}_1, \ldots, \mathbf{v}_p$. That is, $\text{Span} \{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is the collection of all vectors that can be written in the form

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p$$

with c_1, \ldots, c_p scalars.

Example 2 Use the accompanying figure to write vectors $\mathbf{w}, \mathbf{x}, \mathbf{y}$, and \mathbf{z} as a linear combination of \mathbf{u} and \mathbf{v} . Is every vector in \mathbb{R}^2 a linear combination of \mathbf{u} and \mathbf{v} ?

in the direction of \vec{v} , so $\vec{y} = \vec{x} + 1.5 \vec{v} = -2\vec{u} + 2\vec{v} + 1.5\vec{v} = -2\vec{u} + 3.5\vec{v}$

Example 3 Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 0 \\ 5 \\ 5 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 2 \\ 0 \\ 8 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -5 \\ 11 \\ -7 \end{bmatrix}$.

Determine if **b** is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 . That is, determine whether weights x_1 , x_2 and x_3 exist such that $(\bigcirc i f$ **b** is in Span $\{\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}, \overrightarrow{a_3}, \overrightarrow{a_3}\}$

- A Geometric Description of Span{v} and Span{u, v} of $c\vec{v}$, for all $c \in \mathbb{R}$. 1. Let v be a nonzero vector in \mathbb{R}^3 Span{v}.
 - 2. Let **u** and **v** be nonzero vectors in \mathbb{R}^3 , and **v** is not a multiple of **u**, then $\{\mathbf{u}, \mathbf{v}\}$ is the plane in \mathbb{R}^3 that contains **u**, **v** and **0**. Span 7 t, J

Example 4 Give a geometric description of $\mathrm{Span}\left\{\mathbf{v}_1,\mathbf{v}_2\right\}$ if (i) $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -2 \\ 0 \\ 3 \end{bmatrix}$ Notice that O vi vz are not scalan multiples of each other. Both vi, vi has o on the y coordinate.
So they are on the x z plane
Thus. Span ?vi, vi ? is the x z plane.

(ii)
$$\mathbf{v}_1 = \begin{bmatrix} 4\\1\\-3 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 12\\3\\-9 \end{bmatrix}$

Notice that
$$\vec{v}_{z} = 3\vec{v}_{i}$$

Thus any linear combination of \vec{v}_{i} and \vec{v}_{z} is
a multiple of \vec{v}_{i} . Since
 $C_{i}\vec{v}_{i} + C_{z}\vec{v}_{z} = C_{i}\vec{v}_{i} + C_{z}\cdot 3\vec{v}_{i} = (3C_{z}+C_{i})\vec{v}_{i}$
So Span? \vec{v}_{i} . \vec{v}_{z} ? is the set of points on the
line through \vec{v}_{i} and $(0, 0, 0)$

The following two questions are left as exercises. I will provide the complete notes for solving them after the lecture.

Exercise 5 Let
$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\-2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -3\\1\\8 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} h\\-5\\-3 \end{bmatrix}$. For what value(s) of h is \mathbf{y} in the plane spanned by \mathbf{v}_1 and \mathbf{v}_2 ?

ANS: By the definition of Span $\{\mathbf{v}_1, \mathbf{v}_2\}$, we know that \mathbf{y} is in the plane spanned by \mathbf{v}_1 and \mathbf{v}_2 if and only if the vector equation $\mathbf{y} = x_1\mathbf{v}_1 + x_2\mathbf{v}_2$ has solution(s). The corresponding augmented matrix is:

$$egin{array}{cccc} [\mathbf{v}_1 & \mathbf{v}_2 & \mathbf{y}] = egin{bmatrix} 1 & -3 & h \ 0 & 1 & -5 \ -2 & 8 & -3 \end{bmatrix} \sim egin{bmatrix} 1 & -3 & h \ 0 & 1 & -5 \ 0 & 2 & -3 + 2h \end{bmatrix} \sim egin{bmatrix} 1 & -3 & h \ 0 & 1 & -5 \ 0 & 0 & 7 + 2h \end{bmatrix}.$$

Thus vector \mathbf{y} is in $\operatorname{Span} \{ \mathbf{v}_1, \mathbf{v}_2 \}$ when 7 + 2h is zero, that is, when h = -7/2.

Exercise 6 Let
$$A = \begin{bmatrix} 2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1 \end{bmatrix}$$
, let $\mathbf{b} = \begin{bmatrix} 10 \\ 3 \\ 3 \end{bmatrix}$, and let W be the set of all linear combinations of the columns of A .

a. Is ${f b}$ in W ?

b. Show that the third column of A is in W.

ANS:

a. Denote the columns of A by $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$. Then $W = \text{Span} \{ \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \}$.

Note that **b** is in W if and only if the vector equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$ has solution(s). We check the corresponding augmented matrix:

				$\begin{bmatrix} 2 \end{bmatrix}$	0	6	10]		[1	0	3	5]		[1	0	3	5]		[1	0	3	5]
$[\mathbf{a}_1$	\mathbf{a}_2	\mathbf{a}_3	$\mathbf{b}] =$	-1	8	5	3	\sim	-1	8	5	3	\sim	0	8	8	8	\sim	0	8	8	8
				1	-2	1	3		1	-2	1	3		0	-2	-2	-2		0	0	0	0

So the system has at least one solution (in fact, infinitely many solutions).

Thus \mathbf{b} is a linear combination of the columns of A, that is, \mathbf{b} is in W.

b. The third column of A is in W because $\mathbf{a}_3 = \mathbf{0} \cdot \mathbf{a}_1 + \mathbf{0} \cdot \mathbf{a}_2 + 1 \cdot \mathbf{a}_3$.