Section 1.3 Vector Equations

Vectors in \mathbb{R}^{2}

Definitions

1. A matrix with only one column is called a column vector or simply a vector. For example,

$$
\vec{u}=\left[\begin{array}{r}
-3 \\
2
\end{array}\right], \quad \vec{v}=\left[\begin{array}{l}
0.1 \\
0.4
\end{array}\right], \quad \vec{\omega}=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]
$$

2. Two vectors in \mathbb{R}^{2} are equal if and only if their corresponding entries are equal. For example,

$$
\vec{a}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \text { and } \vec{b}=\left[\begin{array}{l}
3 \\
1
\end{array}\right] \text { are not equal. }
$$

3. The set of all vectors with two entries is denoted by \mathbb{R}^{2} (read "r-two").
4. Given two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{2}, their sum is the vector $\mathbf{u}+\mathbf{v}$ obtained by adding corresponding entries of \mathbf{u} and \mathbf{v}. For example,

$$
\stackrel{\rightharpoonup}{u}+\stackrel{\rightharpoonup}{v}=\left[\begin{array}{r}
-3 \\
2
\end{array}\right]+\left[\begin{array}{l}
0.1 \\
0.4
\end{array}\right]=\left[\begin{array}{r}
-2.9 \\
2.4
\end{array}\right]
$$

5. Given a vector \mathbf{u} and a real number c, the scalar multiple of \mathbf{u} by c is the vector $c \mathbf{u}$ obtained by multiplying each entry in \mathbf{u} by c. For example,

$$
\text { If } \vec{u}=\left[\begin{array}{c}
-3 \\
2
\end{array}\right] \text { and } c=4 \text {, then } c \vec{u}=4 \cdot\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
-12 \\
8
\end{array}\right]
$$

Example 1 Write a vector equation that is equivalent to the given system of equations.

$$
\begin{aligned}
4 x_{1}+x_{2}+3 x_{3} & =9 \\
x_{1}-7 x_{2}-2 x_{3} & =2 \\
8 x_{1}+6 x_{2}-5 x_{3} & =15
\end{aligned}
$$

ANS: $\left[\begin{array}{c}4 x_{1} \\ x_{1} \\ 8 x_{1}\end{array}\right]+\left[\begin{array}{c}x_{2} \\ -7 x_{2} \\ 6 x_{2}\end{array}\right]+\left[\begin{array}{c}3 x_{3} \\ -2 x_{3} \\ -5 x_{3}\end{array}\right]=\left[\begin{array}{c}9 \\ 2 \\ 15\end{array}\right]$
or $x_{1}\left[\begin{array}{l}4 \\ 1 \\ 8\end{array}\right]+x_{2}\left[\begin{array}{c}1 \\ -7 \\ 6\end{array}\right]+x_{3}\left[\begin{array}{c}3 \\ -2 \\ -5\end{array}\right]=\left[\begin{array}{c}9 \\ 2 \\ 15\end{array}\right]$

Geometric Descriptions of \mathbb{R}^{2}
We can identify a geometric point (a, b) with the column vector $\left[\begin{array}{l}a \\ b\end{array}\right]$.

FIGURE 1 Vectors as points.

FIGURE 2 Vectors with arrows.

Parallelogram Rule for Addition
If \mathbf{u} and \mathbf{v} in \mathbb{R}^{2} are represented as points in the plane, then $\mathbf{u}+\mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are $\mathbf{u}, \mathbf{0}$, and \mathbf{v}. See Figure 3.
Given \vec{u}, \vec{v} on the $x_{1}-x_{2}$ plane. we have two ways to find $\vec{u}+\vec{v}:(1) \vec{u}+\vec{v}$ is the diagonal
of the parallel to gram with
two sides \vec{u}, \vec{v} passing figure 3 The parallelogram rule.
(2) starting from the endpt of $\vec{\mu}$, draw a line parallel to \vec{v} with the same length. The exdpt will be $\vec{u}+\vec{v}$. the origin $(0,0)$

Scalar multiples of a nonzero vector
The set of all scalar multiples of one fixed nonzero vector \mathbf{u} is a line through the origin, $(0,0)$ and \mathbf{u}.

Generalization to \mathbb{R}^{3} and \mathbb{R}^{n}

1. Vectors in \mathbb{R}^{3} are 3×1 column matrices with three entries.
2. Let n be a positive integer, \mathbb{R}^{n} denotes the collection of all lists of n real numbers, usually written as $n \times 1$ column matrices, such as

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]
$$

Algebraic Properties of \mathbb{R}^{n}

$\begin{array}{ll}\text { For all } \mathbf{u}, \mathbf{v}, \mathbf{w} \text { in } \mathbb{R}^{n} \text { and all scalars } c \text { and } d \text { : } \\ \begin{array}{ll}\bullet \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \\ \text { - }(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) \\ \text { - } \mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}\end{array} & \overrightarrow{0}=\left[\begin{array}{l}0 \\ 0 \\ \vdots \\ 0\end{array}\right]\end{array}$

- $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0}$, where $-\mathbf{u}$ denotes $(-1) \mathbf{u}$
- $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
- $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
- $c(d \mathbf{u})=(c d) \mathbf{u}$
- $\mathbf{1 u}=\mathbf{u}$

Linear Combinations

Given vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ in \mathbb{R}^{n} and given scalars $c_{1}, c_{2}, \ldots, c_{p}$, the vector \mathbf{y} defined by

$$
\mathbf{y}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

is called a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ with weights c_{1}, \ldots, c_{p}.

Theorem

A vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b} \tag{1}
\end{array}\right]
$$

In particular, $\underline{\mathbf{b}}$ can be generated by a linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ if and only if there exists a solution to the linear system corresponding to the matrix (1).

Definition: Span $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$

$$
b \in \operatorname{Span}\left\{a_{1}, \cdots, a_{n}\right\} \text { (by the def of } \operatorname{span}\left\{a_{1} \cdots, a_{n}\right\} \text {) }
$$

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are in \mathbb{R}^{n}, then the set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is denoted by Span $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ and is called the subset of \mathbb{R}^{n} spanned (or generated) by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$. That is, $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is the collection of all vectors that can be written in the form

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}
$$

with c_{1}, \ldots, c_{p} scalars. every vector in \mathbb{R}^{2} a linear combination of \mathbf{u} and \mathbf{v} ?

$$
\vec{\omega}=-\vec{u}+2 \vec{v}
$$

To reach $\vec{\omega}$ from the origin. travel -1 units in the \vec{u} direction then travel 2 units in the \vec{v} direction.
Similarly.

$$
\begin{aligned}
& \vec{x}=-2 \vec{u}+2 \vec{v} \\
& \vec{y}=-2 \vec{u}+3.5 \vec{v} \\
& z=-3 \vec{u}+4 \vec{v}
\end{aligned}
$$

For \vec{y}, we can also start from \vec{x}, and travel 1.5 units in the direction of \vec{v}, So $\vec{y}=\vec{x}+1.5 \vec{v}=-2 \vec{u}+2 \vec{v}+1.5 \vec{v}=-2 \vec{u}+3.5 \vec{v}$

Example 3 Let $\mathbf{a}_{1}=\left[\begin{array}{r}1 \\ -2 \\ 2\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}0 \\ 5 \\ 5\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{l}2 \\ 0 \\ 8\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-5 \\ 11 \\ -7\end{array}\right]$.
Determine if \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3}. That is, determine whether weights x_{1}, x_{2} and x_{3} exist such that $\left(\Leftrightarrow\right.$ if \vec{b} is in $\left.\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}, \overrightarrow{a_{3}}\right\}\right)$

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=\mathbf{b}
$$

ANS: By the previous Thm, the vector egn.
has the same solution set as the linear system whose augmented matrix is.

$$
\begin{aligned}
M & =\left[\begin{array}{ccc|c}
1 & 0 & 2 & -5 \\
-2 & 5 & 0 & 11 \\
2 & 5 & 8 & -7
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & 2 & -5 \\
0 & 5 & 4 & 1 \\
0 & 5 & 4 & 3
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & 2 & -5 \\
0 & 5 & 4 & 1 \\
0 & 0 & 0 & -2
\end{array}\right] \rightarrow \text { This means } 0=-2 \text { (impossible!) }
\end{aligned}
$$

The corresponding linear system has no solution.
Thus \vec{b} is not a linear combination of $\overrightarrow{a_{1}}, \overrightarrow{a_{2}}$, and $\overrightarrow{a_{3}}$ (or \vec{b} is not in $\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}, \overrightarrow{a_{3}}\right\}$)
by der. Span $\{u\}$ is a collection A Geometric Description of $\operatorname{Span}\{\mathbf{v}\} \underline{\text { and } \operatorname{Span}\{u, v\} \rightarrow} \rightarrow$ of $c \vec{v}$, for all $c \in \mathbb{R}$.

1. Let \mathbf{v} be a nonzero vector in $\mathbb{R}^{3}, \operatorname{Span}\{\mathbf{v}\}$ is the set of points on the line in \mathbb{R}^{3} through \mathbf{v} and $\mathbf{0}$.
2. Let \mathbf{u} and \mathbf{v} be nonzero vectors in \mathbb{R}^{3}, and \mathbf{v} is not a multiple of \mathbf{u}, then $\left\{\right.$ is the plane in \mathbb{R}^{3} that contains \mathbf{u}, \mathbf{v} and $\mathbf{0}$.

Example 4 Give a geometric description of $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ if
(i) $\mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ 0 \\ 3\end{array}\right]$

(ii) $\mathbf{v}_{1}=\left[\begin{array}{r}4 \\ 1 \\ -3\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{r}12 \\ 3 \\ -9\end{array}\right]$

Notice that $\vec{v}_{2}=3 \vec{v}_{1}$
Thus any linear combination of \vec{v}_{1} and \vec{v}_{2} is a multiple of \vec{V}_{1}. since

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=c_{1} \vec{v}_{1}+c_{2} \cdot 3 \vec{v}_{1}=\left(3 c_{2}+c_{1}\right) \stackrel{\rightharpoonup}{v_{1}}
$$

So $S_{\operatorname{pan}}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is the set of points on the line through \vec{v}_{1} and $(0,0,0)$

The following two questions are left as exercises. I will provide the complete notes for solving them after the lecture.

Exercise 5 Let $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-3 \\ 1 \\ 8\end{array}\right]$, and $\mathbf{y}=\left[\begin{array}{r}h \\ -5 \\ -3\end{array}\right]$. For what value(s) of h is \mathbf{y} in the plane spanned by \mathbf{v}_{1} and \mathbf{v}_{2} ?

ANS: By the definition of $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, we know that \mathbf{y} is in the plane spanned by \mathbf{v}_{1} and \mathbf{v}_{2} if and only if the vector equation $\mathbf{y}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}$ has solution(s). The corresponding augmented matrix is:

$$
\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{y}
\end{array}\right]=\left[\begin{array}{rrr}
1 & -3 & h \\
0 & 1 & -5 \\
-2 & 8 & -3
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -3 & h \\
0 & 1 & -5 \\
0 & 2 & -3+2 h
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -3 & h \\
0 & 1 & -5 \\
0 & 0 & 7+2 h
\end{array}\right]
$$

Thus vector \mathbf{y} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ when $7+2 h$ is zero, that is, when $h=-7 / 2$.

Exercise 6 Let $A=\left[\begin{array}{rrr}2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1\end{array}\right]$, let $\mathbf{b}=\left[\begin{array}{r}10 \\ 3 \\ 3\end{array}\right]$, and let W be the set of all linear combinations of the columns of A.
a. Is \mathbf{b} in W ?
b. Show that the third column of A is in W.

ANS:

a. Denote the columns of A by $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$. Then $W=\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$.

Note that \mathbf{b} is in W if and only if the vector equation $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=\mathbf{b}$ has solution(s). We check the corresponding augmented matrix:
$\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{b}\end{array}\right]=\left[\begin{array}{rrrr}2 & 0 & 6 & 10 \\ -1 & 8 & 5 & 3 \\ 1 & -2 & 1 & 3\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 0 & 3 & 5 \\ -1 & 8 & 5 & 3 \\ 1 & -2 & 1 & 3\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 0 & 3 & 5 \\ 0 & 8 & 8 & 8 \\ 0 & -2 & -2 & -2\end{array}\right] \sim\left[\begin{array}{llll}1 & 0 & 3 & 5 \\ 0 & 8 & 8 & 8 \\ 0 & 0 & 0 & 0\end{array}\right]$
So the system has at least one solution (in fact, infinitely many solutions).
Thus \mathbf{b} is a linear combination of the columns of A, that is, \mathbf{b} is in W.
b. The third column of A is in W because $\mathbf{a}_{3}=0 \cdot \mathbf{a}_{1}+0 \cdot \mathbf{a}_{2}+1 \cdot \mathbf{a}_{3}$.

